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ABSTRACT

This study addresses the uncertainty ofHigh-ResolutionRapidRefresh (HRRR) quantitative precipitation

forecasts (QPFs), which were recently appended to the operational hydrologic forecasting framework. In this

study, we examine the uncertainty features of HRRR QPFs for an Iowa flooding event that occurred in

September 2016. Our evaluation of HRRRQPFs is based on the conventional approach of QPF verification

and the analysis of mean areal precipitation (MAP) with respect to forecast lead time. The QPF verification

results show that the precipitation forecast skill of HRRR significantly drops during short lead times and then

gradually decreases for further lead times. The MAP analysis also demonstrates that the QPF error sharply

increases during short lead times and starts decreasing slightly beyond 4-h lead time. We found that the

variability of QPF error measured in terms of MAP decreases as basin scale and lead time become larger and

longer, respectively. The effects of QPF uncertainty on hydrologic prediction are quantified through the

hillslope-linkmodel (HLM) simulations using hydrologic performancemetrics (e.g., Kling–Gupta efficiency).

The simulation results agree to some degree with those from the MAP analysis, finding that the performance

achieved from the QPF forcing decreases during 1–3-h lead times and starts increasing with 4–6-h lead times.

The best performance acquired at the 1-h lead time does not seem acceptable because of the large overes-

timation of the flood peak, alongwith an erroneous early peak that is not observed in streamflowobservations.

This study provides further evidence that HRRR contains a well-known weakness at short lead times, and the

QPF uncertainty (e.g., bias) described as a function of forecast lead times should be corrected before its use

in hydrologic prediction.

1. Introduction

Weather-related natural disasters have become more

frequent and extreme, likely because of climate change

and its accompanying effects (e.g., Meehl et al. 2000;

Milly et al. 2002; Van Aalst 2006; Lehmann et al. 2015).

These disasters have substantially endangered public

safety and weakened community resilience in recent

years. To prevent andmanage potential threats from the

increasing risks and vulnerability to extreme weather

and water events, accurate hydrologic prediction is a

critical factor in mitigating impacts (i.e., human life and

economic losses) of the extreme events. However, op-

erational hydrologic forecasting is challenging because

prediction skill is limited by the difficulties in describing

interactions of complex human-nature systems due to

imperfect models and numerous uncertainties in model

parameters and input data (e.g., Li et al. 2009; Pagano

et al. 2014).

During the last several years, the Iowa Flood Center

(IFC) has been developing and operating a fully auto-

mated flood forecasting system for the entire state of

Iowa (Krajewski et al. 2017). As part of the system’s

development, the IFC has deployed a distributed hy-

drologic model capable of representing the physical

processes of transforming rainfall to runoff. The model

is called the hillslope-link model (HLM); it uses a de-

composition of landscape into channels and hillslopes

with an average element size of 0.1 km2. In the HLM,

the soil properties and land cover are used to determine

the split between runoff and infiltration. For evapo-

transpiration, the HLM uses climatologic estimates us-

ing 12 years of North American LandData Assimilation

System data (Mitchell et al. 2004). The HLM is mainly

driven by the IFC’s radar-derived quantitative precipi-

tation estimates (QPEs), generated in real time with

space and time resolutions of 0.5 km and 5min (see, e.g.,

Seo and Krajewski 2015; Seo et al. 2015). For compari-

son, we also use theMulti-RadarMulti-Sensor (MRMS)

QPE (Zhang et al. 2016) with 1-km and 1-h resolutionsCorresponding author: Bong-Chul Seo, bongchul-seo@uiowa.edu
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to drive the HLM. Likewise, in 2016, the U.S. National

Water Center implemented and continues to test oper-

ationally theNationalWaterModel (NWM). TheNWM

is also a distributed hydrologic model that simulates

and forecasts streamflow over the entire United States

(e.g., Maidment 2017; Lin et al. 2018). It contains land

surface model components that require meteorological

forcing data (e.g., incoming shortwave and longwave

radiation, humidity, temperature, pressure, wind speed,

and precipitation) to simulate terrestrial hydrologic

processes. The precipitation data used for the NWM

varies with different forecast model cycles (e.g., MRMS

for ‘‘analysis and assimilation’’). The HLM and NWM

share some similarities, mainly that both are based on

terrain data (see Quintero and Krajewski 2018). The

operation of the HLM and NWM reveals the increasing

demand for high-resolution hydrologic modeling and

forecasting. These systems enable researchers to de-

scribe more detailed aspects of the interactions between

atmosphere and land surface that have not been ex-

plored by conventional approaches (e.g., lumped and

mesoscale models). This distributed modeling effort can

complement current hydrologic guidance at National

Weather Service (NWS) forecast locations and expand

forecast capabilities and guidance coverage in under-

served locations (Cosgrove et al. 2015, 2016).

The IFC recently added quantitative precipitation

forecasts (QPFs) generated by the High-Resolution

Rapid Refresh (HRRR) model into the HLM forc-

ing stream to extend streamflow forecast lead times

(e.g., Arduino et al. 2005; Li et al. 2017). The HRRR

model provides precipitation forecasts up to 18-h lead

times with space and time resolutions of 3 km and

1 h, which meet the requirements of the IFC’s high-

resolution distributed hydrologic modeling. The NWM

operational configuration of ‘‘analysis and assimilation’’

and ‘‘short range’’ model cycles (http://water.noaa.gov/

about/nwm) also uses the HRRR QPF product. While

the QPE products in the HLM and NWM forcing

stream have often been evaluated in terms of precipi-

tation accuracy as well as its impact on flood prediction

(e.g., Chen et al. 2013; Seo et al. 2013; Gochis 2016;

Krajewski et al. 2017), the utility of HRRR for flood

prediction has not been widely examined. The uncer-

tainty structure of HRRR QPF is still unknown (even

if the uncertainty in the QPF is generally larger than

that of QPE), and its potential effect on hydrologic

prediction is not yet well understood. In this study,

therefore, we aim to improve our understanding by

evaluating the precipitation forecast skills of HRRR

and the potential effects of its uncertainty on flood

prediction. We used a significant Iowa flooding event

that occurred in September 2016 to analyze and evaluate

the HRRR model predictions. This case study allowed

us to develop a framework to validate numerical weather

predictions that are closely related to hydrologic pro-

cesses (e.g., precipitation).

This paper is structured as follows. In section 2, we

provide information on the flooding event, as well as

precipitation (QPE and QPF) and streamflow data used

in this study. We also provide a brief description of the

HLM in the section. Section 3 describes the analysis

framework and evaluation metrics we used for the

HRRR QPF assessment and error characterization in

this study. In section 4, we present the evaluation results

on the HRRR QPF error and its propagation through

rainfall–runoff processes. Section 5 summarizes and

discusses our main findings and limitations of this study,

as well as required future work.

2. Flooding event, data, and model

In September 2016, extremely heavy rainfall caused

significant river and flash flooding in northeastern and

central Iowa (see Fig. 1 for daily precipitation analysis).

A tropical air mass interacting with a stationary front

triggered several rounds of heavy storms in these areas.

During the period of 20–23 September, rainfall totals

reported for the region were 80–200mm on average,

and for some localities more than 250mm. A number of

towns near major rivers (e.g., Cedar and Wapsipinicon

Rivers) and their tributaries in northeastern and

central Iowa experienced significant flooding, causing

the evacuation of thousands of residents. The river

stages on the major rivers were comparable to those of

the devastating Iowa flood of 2008 (e.g., Mutel 2010;

Smith et al. 2013). Below, we provide more details on

the meteorological and hydrologic aspects of this event,

as well as collected precipitation and streamflow data-

sets used to analyze the uncertainty of HRRR QPF for

the selected flooding event.

a. Flooding event summary

On 21 September, a stationary frontal system pro-

duced multiple rounds of showers and thunderstorms in

northeastern Iowa near Mason City, as shown in Fig. 1a.

These thunderstorms developed a supercell that brought

significant amounts of rain over the Shell Rock River.

The supercell stayed over the river for more than 3h and

produced 200–250mm of rain, resulting in flash flooding

in Floyd County. On 22 September, the frontal system

moved southwesterly over central Iowa and delivered

80–120mm of rain to theAmes area, as shown in Fig. 1b.

The rain then spread and moved to northeast Iowa

again, delivering 80–150mm of heavy rain over the

same area that the supercell had hit the night before.
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This resulted in new flash flooding and record water levels

on the Shell Rock River at Shell Rock. On 23 September,

another round of widespread showers and heavy storms

generated by the frontal system delivered more than

130mm of rain near Cedar Rapids, as shown in Fig. 1c.

This heavy rain resulted in the second-highest crest ever

recorded on the Cedar River at Cedar Rapids on

30 September. The flooding during this period was the

result of intense and slow-moving storms that exten-

sively covered the areas shown in Fig. 1, along with

abnormally wet soil conditions during August 2016.

b. Precipitation and streamflow data

HRRR is a real-time convection-allowing atmo-

spheric model updated hourly and initialized by 3-km

grids with radar assimilation (Benjamin et al. 2009;

Alexander et al. 2010). HRRR is fully dependent on

its parent models, the radar-assimilating Rapid Refresh

and radar-enhanced Rapid Update Cycle. The HRRR

model provides hourly 3-kmQPF for up to 18h (while it

also creates an experimental subhourly product, we used

the hourly product in this study). We collected the

HRRR QPF product for the 6-month period of May–

October 2016 that contains the significant flooding

events. We used the entire 6-month product for the

conventional verification of HRRR precipitation fore-

cast skills and examined the product for the flooding

period to evaluate its impact on streamflow prediction.

MRMS integrates base radar data across the conter-

minous United States with satellite, lightning, and rain

gauge observations, as well as atmospheric environ-

mental data (Zhang et al. 2016). MRMS generates a

suite of weather and QPE products (e.g., rainfall rate,

accumulation, and precipitation type) with enhanced

time resolutions ranging from 2min to 1 day, with spatial

resolution of approximately 1 km. Because of its na-

tional coverage and high resolution, MRMS products

are extensively used to strengthen severe weather

warnings and forecasting. In particular, MRMS QPE is

not only fed into the HLM and NWM, but is also used

for other operational hydrologic and weather models

for improved flash flood and weather forecasting (e.g.,

Gourley et al. 2017). In this study, we used the rain

gauge–corrected MRMS QPE (hereafter, MRMS-GC)

as a reference to assess the forecast skills and perfor-

mance of HRRR QPF. MRMS-GC is ‘‘1-h local gauge

bias-corrected radar precipitation accumulations’’ re-

ferred to as ‘‘Q3GC_SHSR_1H’’ in Zhang et al. (2016).

We collected the hourly MRMS-GC product for the

same 6-month period.

The IFC product is a radar-only (e.g., without rain

gauge correction) QPE, generated by combining data

from seven Weather Surveillance Radar-1988 Doppler

(WSR-88D) radars that cover the entire Iowa domain.

The IFCQPE algorithms (e.g., Seo et al. 2011) construct

a composite rain rate map every 5min after applying

polarimetric data quality control (Seo et al. 2015).

FIG. 1. Daily rainfall accumulation for (a) 21, (b) 22, and (c) 23

Sep 2016. The daily analysis maps were created using MRMSQPE

with rain gauge correction.
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The algorithms then generate hourly accumulations using

an advection procedure (Seo and Krajewski 2015) to

correct radar temporal sampling errors. We used the

IFC product to simulate streamflow using the HLM and

to compare the simulation results with those driven by

MRMS-GC.

We also collected USGS streamflow observations for

the evaluation of hydrologic model simulations driven

by the multiple precipitation forcing products (e.g.,

QPE and QPF). As shown in Fig. 1, the heavy storms hit

the domain of the Cedar River basin and caused sig-

nificant flooding in the area. Therefore, we selected

two major USGS stations within the Cedar River basin

and acquired stream discharge data for the flooding

period. In Fig. 1c, we present the two selected USGS

stations, Waterloo and Cedar Rapids, with the basin

boundary. The Cedar River basin is one of the largest

basins in Iowa, with an upstream catchment area of

approximately 17 000km2.

c. Hydrologic model

The HLM builds on the concept of landscape de-

composition into hillslopes and channels (Mantilla and

Gupta 2005). The HLM allows for flexible structure

and the representation of the physical processes of run-

off generation and water transport; these processes in-

clude initial abstraction, infiltration, overland flow,

percolation, base flow, and channel routing. TheHLM is

calibration-free, that is, a common configuration of pa-

rameters determined a priori applies to all the hillslopes.

Each hillslope contains four water storage components:

channel storage, water ponded on hillslope surface, ef-

fective water depth in the topsoil layer, and effective

water depth in hillslope subsurface. The mass conser-

vation equations of the water storage are defined in

terms of ordinary differential equations. Channel stream-

flow comprises several flow components: 1) overland

flow from the water ponded on hillslope surface, 2)

interflow from the water depth in the top soil layer, and

3) baseflow from the hillslope subsurface. The mass

transport for each channel link in the network is defined

as a power-law relation that describes flow velocity as

a function of discharge and drainage area (Ayalew et al.

2014). More details about the HLM equations, config-

uration, and numerical solver are provided in Small

et al. (2013) and Krajewski et al. (2017).

3. Methodology

In this section, we describe evaluation approaches

to quantify the precipitation forecast skills of HRRR

QPF and the effects of its error or uncertainty on the

streamflow prediction. Figure 2 illustrates a schematic

view of the evaluation procedures in this study. First

of all, we assess the HRRR precipitation forecasts using

common verification skill scores (see, e.g., Schaefer

1990) on forecast lead time. Before we apply the hy-

drologic model for streamflow simulations, we also

characterize basin-scale uncertainties of the QPF forc-

ing data. We use statistical metrics based on a mean-

ingful hydrologic factor, that is, mean areal precipitation

(MAP; Johnson et al. 1999), that is closely connected

FIG. 2. Schematic overview of HRRR QPF evaluation procedures. The QPF evaluation involves three steps: (a) conventional QPF

verification by comparing HRRR QPF with reference QPE (MRMS), (b) analysis of mean areal precipitation estimated for basin units

used in the HLM, and (c) performance evaluation of simulated streamflow driven by the precipitation forcing products.
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with the streamflow generation.We then drive theHLM

with the forcing products (e.g., MRMSQPE andHRRR

QPF) and evaluate simulated streamflow with input

from HRRRQPF. We assess the streamflow simulation

results with respect to HRRR lead time and basin scale.

We do not use any calibration procedure in the HLM

simulation. In real-time operations, it is common to

drive a hydrologic model with a combination of QPE at

present time and QPF for the next couple of hours or

days and generate hydrologic forecasts. In this study,

however, we split the QPE and QPF forcing data and

drive the model individually. This forcing data separa-

tion prevents blending errors in hydrologic forecasts

contributed by both the QPE and QPF forcing products

and allows us to examine the errors driven solely by the

QPF product.

In the analysis procedures shown in Fig. 2, we use

MRMS-GC as reference to access the prediction capability

of HRRR QPF. The MRMS-GC product incorporates

hourly rain gauge data from the hydrometeorological

automated data system (HADS; Kim et al. 2009). The

performance evaluation of this reference requires an

independent hourly gauge network that thoroughly

covers the study domain. Unfortunately, there is no such

network in the area, and thus we were not able to per-

form the reference product evaluation at the hourly

scale. Instead, we performed a simple comparison with

the results presented in Zhang et al. (2016), which re-

ported that MRMS-GC and Stage IV products showed

similar performance at the daily scale for the cold months

of 2014, while MRMS-GC showed larger errors for warm

months. We evaluated both Stage IV and MRMS-GC

products for our study period, using the NWS Co-

operative Observer Program (COOP; Mosbacher et al.

1989) network that reports daily precipitation values.

We found that the daily averages of mean absolute

error (MAE) of MRMS-GC (about 1.24mm) and Stage

IV were almost equivalent. This MAE value was

comparable to the one for cold months (approximately

2.54mm) in Zhang et al. (2016), which showed better

performance than it did in the warm months. We also

looked at an hourly gauge interpolation analysis based

on HADS and observed that gauge interpolation was

not effective to capture rainfall spatial variability at the

hourly scale. These facts may justify the use of MRMS-

GC as reference in this study. We note that radar–gauge

merging schemes (e.g., Velasco-Forero et al. 2009;

Nanding et al. 2015) that preserve the spatial variability

of the radar field with maintaining the accuracy of rain

gauge measurements might be potential options to

obtain a more reliable reference product. However, we

think that those merging schemes may not yield better

results thanMRMS-GC (local gauge bias correction) for

the study area because of the low density of HADS rain

gauges in the Cedar River basin (e.g., 18 gauges in a

17 000km2 area).

a. Skill scores for QPF verification

We use four skill scores frequently employed in the

forecast verification analysis to objectively assess the

performance of precipitation forecasts. The scores in-

clude hit rate (HR), false alarm rate (FAR), frequency

bias (FB), and Gilbert skill score (GSS). We calculate

these scores based on a contingency table that de-

scribes the number of forecasting successes and failures

depending on observations (event or nonevent), as

presented in Table 1. The definition of the skill scores

using Table 1 are

HR5
TP

TP1FN
, (1)

FAR5
FP

TP1FP
, (2)

FB5
TP1FP

TP1FN
, and (3)

GSS5
TP3TN2FN3FP

(FN1FP)(TP1FN1FP1TN)1 (TP3TN2FN3FP)
. (4)

The values of TP, FN, FP, and TN in Table 1 are deter-

mined by counting the number of grids (in MRMS-GC

and HRRR QPF) identified as rain or no-rain. For

instance, a rain grid is defined when its rainfall value

exceeds a specific rainfall threshold. The HR is equiva-

lent to the probability of detection (POD) and indicates

the ratio of the correctly forecasted number of grids to

the total number of observed rain grids. The FAR is a

measure of a forecast failure defined as the proportion of

the number of failures to the total number of forecasted

rain grids. The FB is the ratio of the total number of

forecasted rain grids to the total number of ob-

served rain grids, and an FB value greater than unity

indicates the overprediction of a rainfall coverage.

To evaluate overall forecast skill, we use the GSS in-

stead of, but similar to, the critical success index
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(CSI; Donaldson et al. 1975), because the CSI is

sometimes biased and dependent on the occurrence

rate of rain events being forecasted. Schaefer (1990)

provides a detailed discussion about the GSS and CSI.

b. Statistical metrics for hydrologic evaluation

As shown in Fig. 2, we divide the hydrologic evaluation

of HRRR QPF into two parts based on 1) the analysis of

mean areal precipitation estimated for basin units used

in the HLM and 2) the HLM streamflow simulation

driven by the QPF forcing. As references for both

evaluations, we compute MAP using MRMS-GC and

simulate streamflow discharge with MRMS-GC forcing.

We based our calculation of the verification scores of

Eqs. (1)–(4) on binary classification (e.g., rain or no

rain), and this does not imply the magnitude of errors in

the precipitation forecasts that can directly affect the

rainfall–runoff translation processes. Because precipi-

tation forecasts contain significant uncertainties and are

generally biased (e.g., Buizza et al. 2005), we introduce

factors to describe errors/uncertainties of HRRR QPF

that might affect errors in streamflow generation. The

statistical metrics for the MAP analysis include bias B,

correlation coefficient R, and root-mean-square error

(RMSE). In this study, we define the bias as a mul-

tiplicative term of errors as seen in Eq. (5). The bias

describes a systematic tendency of the precipitation

forecasts that can erroneously generate water volume in

hydrologic prediction. The correlation coefficient de-

scribes agreement or linear dependence between refer-

ence and forecasts, and the RMSE is used as a measure

of the differences between them:

B5

�
s,t
R

HRRR
(s, t)

�
s,t
R

MRMS-GC
(s, t)

, (5)

where RHRRR(s,t) and RMRMS-GC(s,t) denote rainfall

values at a time step t and a grid location s within a

specific basin.

To assess the impact of theQPF forcing on streamflow

prediction, we define three evaluation metrics: Nash–

Sutcliffe efficiency (NSE) defined by Nash and Sutcliffe

(1970), R, and Kling–Gupta efficiency (KGE) proposed

by Gupta et al. (2009). NSE typically describes the

predictive power of hydrologic models and has been

used steadily in numerous studies (e.g., Krause et al.

2005; Seo et al. 2013) for the evaluation of model per-

formance. NSE is defined as

NSE5 1:02
�
t

(S
t
2O

t
)

�
t

O
t
2O

� �2 , (6)

where S and O denote simulated and reference (ob-

served) streamflow. NSE ranges from negative infinity

to 1.0. The negative NSE values imply that the mean of

the reference streamflow is a better predictor than

model simulation, whereas values close to 1.0 indicate

more accurate model performance. KGE is an alterna-

tive metric that was proposed to improve a deficiency

in NSE, namely, that the peak is likely to be under-

estimated when NSE is used in optimization (e.g., cali-

bration). A more detailed comparison of NSE and

KGE can be found in Gupta et al. (2009). In Eq. (7), we

calculate KGE using correlation and the ratios of mean

and standard deviation of simulated and observed

streamflow. The index can be decomposed into easy-to-

understand terms:

KGE5 1:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r2 1)2 1 (a2 1)2 1 (b2 1)2

q
, (7)

where r, a, and b denote correlation, the ratio of stan-

dard deviation (ss/so), and the ratio of mean (ms/mo)

between simulated and observed streamflow, respec-

tively. Similar to NSE, a KGE value close to 1.0 implies

an optimal estimation.

4. Results

In Fig. 3, we present the accumulated rainfall maps

of MRMS-GC and HRRR QPF for the flooding period

of 14–23 September 2016. We use the MRMS-GC

product as reference because it was corrected for er-

rors using hourly rain gauge observations (Zhang et al.

2014). Regarding the HRRR maps shown in Fig. 3, we

accumulated a set of the same lead time products issued

at different times and show the generated maps for

1-, 2-, 5-, and 6-h lead times. A visual inspection reveals

similarities and significant discrepancies between

MRMS andHRRR in Fig. 3. While the observed overall

patterns that show relatively low rain in the south and

high rain in the north of the domain tend to be similar,

the exact locations of heavy rain and rainfall spatial

distribution look quite different. HRRR QPF seems to

be somewhat biased (notably, overestimated for short

TABLE 1. Contingency table to define forecast skill scores. TP,

FN, FP, and TN denote true positive, false negative, false positive,

and true negative, respectively.

Forecasts

Observations Yes No

Yes TP FN

No FP TN
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lead times) depending on lead times and locations.

Heavy rainfall events might have larger conditional

biases (on magnitude, season, storm type, and other

attributes) that may have significant impact on flood

forecasting (e.g., Brown et al. 2012).

a. Conventional QPF verification

We calculated the skill scores of HRRR QPF using

Eqs. (1)–(4). We used the MRMS QPE product,

MRMS-GC, as reference (‘‘observation’’ in Table 1)

because the number of ground observations (e.g., rain

gauge measurements) is limited, and it is hard to ex-

tensively evaluate the skill with limited locations over a

large domain. Since the reference product has higher

spatial resolution (e.g., 1 vs 3 km), we assigned the same

HRRR values to the multiple MRMS grids that are

collocated within an identical HRRR grid for a one-to-

one match between the two products. We used multiple

rainfall threshold values (1, 2, 5, and 10mm) and indi-

vidually defined all matched grid cells in both products

as rain or no-rain. We then counted all the categories

shown in Table 1 for the 10-day flooding event and es-

timated the scores based on each MRMS grid. Because

of the short sample period, the geographic maps of the

calculated scores exposed spatially discontinuous pat-

terns (e.g., some spikes and sinks in southeastern

Iowa), particularly with HR and FB (we do not present

the maps here). To resolve this issue, we extended the

sampling period to six months (May–October), which

included the main flooding event, and we were able to

eliminate all spikes and sinks in the maps. Figure 4

shows the spatially averaged skill scores over the entire

domain shown in Fig. 3, and we present the scores

for both 10-day and 6-month periods with respect to

forecast lead time. In Fig. 4, we can observe that

the forecast skill decreases with increasing rainfall

threshold as the forecast time span becomes longer.

The decreasing pattern and magnitude of observed FB

and overall skill (GSS) are somewhat comparable to

those reported in Moser et al. (2015). We can also

recognize that the accuracy or performance of HRRR

QPF does not seem sufficient to justify its use in hy-

drologic prediction because the GSS in Fig. 4b is only

about 30% even with just 1-h lead time, at which the

score reaches its best performance. The sudden jumps

and drops detected in Fig. 4b after the 15-h lead time

arise from the fact that the HRRR forecast lead time

was extended up to 18 h in late August (the previous

lead time was up to 15 h). The proportion of the QPF

data with full 18-h lead time is about 40% of the entire

analysis period.

b. Hydrologic evaluation

The QPF verification scores shown in Fig. 4 were

obtained from a binary rainfall identification and do not

provide straightforward evidence to describe the QPF’s

effects on streamflow predictions. In this section, we

focus on one of the most significant hydrologic

FIG. 3. Comparison of 10-day rainfall accumulationmaps forMRMS-GC andHRRR for a significant flooding event in September 2016.

The HRRR data were accumulated using a set of the same lead time products issued at different times. The numeric values with HRRR

maps indicate QPF lead times.
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parameters, namely, MAP, in generating streamflow

(see, e.g., Quintero et al. 2016) and characterize the

statistical error structure of HRRR QPF. We also drive

the HLM with HRRR QPF and investigate the QPF

error’s contribution on the streamflow generation.

1) MEAN AREAL PRECIPITATION

Figure 5 shows statistical properties of the HRRR

QPF error (e.g., B, R, and RMSE) with respect to lead

time, and here we present the analysis results up to 6-h

lead time. For this analysis, we accumulated rainfall

amounts over the Cedar River basin as shown in Fig. 1c

for the same period as shown in Fig. 3. The bias is de-

fined as a multiplicative term of QPF error as described

in Eq. (5), and the value greater than 1.0 implies an

overestimation of HRRRQPF versus MRMS. In Fig. 5,

all nested drainage areas ranging from 0.1 to 17 000km2

within the Cedar River basin are included in the box

plots, and the statistical features of QPF error are

compared across the basin scale. As one can see in Fig. 5,

HRRR QPF tends to overestimate at short lead times,

and the tendency of overestimation and high variability

at small scales gradually decreases with longer lead

times. This behavior agrees to some extent with the

widely acknowledged fact that numerical weather

prediction (NWP) models have difficulty in making

predictions at short lead times because they do not

capture the initial precipitation distribution and amounts

well; the models perform better as they dynamically

resolve the large-scale flow (e.g., Lin et al. 2005). The

RMSE shows similar behavior observed in B, whereas

R shows the opposite properties against B and RMSE:

at the smaller-scale basin, variability increases with

longer lead times, and R values tend to be somewhat

higher as forecast lead time increases.

In Fig. 6, we aggregate the results presented in Fig. 5.

Figure 6 shows the statistical error structure of fore-

casted MAP characterized by forecast lead time and

drainage basin scale. For the metrics shown in Fig. 6, the

prediction skill generally improves as basin scale grows

larger, although there is an exception with the bias.

We can also observe that the skill is not sufficiently good

at the initial lead times; it approaches its best perfor-

mance at 5- or 6-h lead time, and then decreases. Since

we based this analysis on a specific event that induced

significant flooding in Cedar Rapids, Iowa, the error

characteristics may vary depending on the season, geo-

graphic location, and precipitation regime.

2) STREAMFLOW

We drove the IFC HLM with the individual forcings

of MRMS-GC, IFC, and HRRR QPF and present

observed and simulated streamflow hydrographs. We

determined the initial model states from a spinup run

that uses a continuous forcing of the previous 6-month

MRMS-GC product. Figure 7 shows the simulation

results driven by QPE products (e.g., MRMS and IFC)

to demonstrate the HLM’s capability compared to the

streamflow observations at the two USGS stations,

Waterloo and Cedar Rapids. We also present the NWM

cycle of ‘‘analysis and assimilation’’ in Fig. 7. In this

figure, the simulated hydrographs driven by the MRMS

FIG. 4. Forecast skill scores of HRRR QPF with respect to forecast lead time for the periods of (a) 14–23 Sep and (b) May–October. A

rainfall threshold is required to calculate the skill scores. ‘‘Rthresh’’ in the legend denotes the rainfall threshold values used in the analysis.
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FIG. 5. Statistical properties of HRRR QPF error characterized using MAP regarding basin scale and forecast lead time. All nested

catchment areas within the Cedar River basin are included in the analysis. Column heads B, R, and RMSE denote the multiplicative bias,

correlation, and RMSE, respectively.
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and IFC products look very similar and close, but show

some early recession and two consecutive peaks when

compared to the USGS streamflow observation. We

closely investigated the double peaks and concluded

that they were caused by rainfall event separation to

which the actual streamflow did not sensitively respond.

This is also associated with the HLM’s early recession

issue discussed above. We will discuss the event sepa-

ration and resulting peaks later in this section. The

NWM results presented in Fig. 7 show that the falling

limbs at both locations agree with the USGS obser-

vations well because the observation data were as-

similated to initialize the forecast model cycles (e.g.,

short and medium range). We noted that the NWM

also yields two peaks at Cedar Rapids that are similar

to those from the HLM simulations, but the first peak

of the NWM seems relatively sharp. We speculate that

the sharp peak arises from the effect of the data as-

similation (e.g., update of the model state using

streamflow observations that are quite different from

model forecasts). For Waterloo, the NWM signifi-

cantly overestimated the peak without the doubled

pattern observed from the HLM simulations. We

present statistical metric values (e.g., NSE, R, and

KGE) in Table 2 to illustrate the performance of

streamflow simulations shown in Fig. 7. Table 2 shows

that the NSE and KGE values of HLM simulations

driven by MRMS and IFC are comparable to those of

NWM, for which streamflow observation data were

used for calibration. This enabled us to use theMRMS

simulation results as reference for ungauged locations

where USGS stations do not exist.

Figure 8 illustrates simulation results driven by

HRRR QPF with lead times of 1-, 2-, 5-, and 6-h QPF.

In Fig. 8, we present the USGS observation and MRMS

result as references. We used the MRMS result as

an alternative reference because USGS streamflow

observations are not available at all catchment outlet

locations employed for the MAP analysis in Fig. 5. We

can only acquire USGS observations at some designated

locations, which does not allow us to explore the impact

of QPF error on the flood prediction at various catch-

ment scales. For the locations whereUSGS observations

do not exist, we captured the simulated hydrographs

driven by MRMS for all hillslope links (almost 40 000

locations) within the Cedar River basin. These are used

FIG. 6. Statistical error structure of forecastedMAP characterized by forecast lead time and drainage basin scale. The symbols indicate the

median values at each basin scale and forecast lead time.

FIG. 7. Simulated streamflow driven by the QPE (MRMS and

IFC) products at (a) Waterloo and (b) Cedar Rapids. The NWM

cycle of analysis and assimilation is also presented for reference.
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to quantify the performance of flood prediction driven

by HRRR QPF. In Figs. 8a and 8c, 1- and 2-h lead time

results show erroneous early peaks before 23 September

as well as significant overestimation at the actual peak

time shown in the MRMS simulation. On the other

hand, 5- and 6-h lead time results do not generate the

early peak detected with 1- and 2-h lead time QPF, but

the peaks at both stations seem to be underestimated

and delayed. In Tables 3 and 4, we present the perfor-

mance metrics of simulations shown in Figs. 8a and 8c.

For the calculation of these metrics, we used the USGS

streamflow observations as reference while employing

the MRMS forcing results as reference for ungauged

locations in the further analysis. In Tables 3 and 4, we

recognize that the performance decreases at short lead

times and starts increasing from 4-h lead time, which

agrees to some extent with theMAP results presented in

Fig. 6.We speculate that the exceptional performance at

1-h lead time is quite different from that at other initial

lead times (e.g., 2 and 3h) because of the radar assimi-

lation in the initialization of HRRR (e.g., Benjamin

et al. 2009).

To inspect the discovered features from the simulated

hydrographs, we present time series of MAP for the

upstream basins of Waterloo and Cedar Rapids in

Figs. 8b and 8d. The numeric values in Figs. 8b and 8d

indicate accumulated MAP for the two rain events. A

MAP difference of about 60mm between MRMS and

2-h lead time QPF for the first rain event at Cedar

Rapids resulted in a huge difference in water volume for

the given catchment area of 17 000 km2 and led to the

erroneous peak. The accumulated rainfall amounts

(for the first event) over time and space as represented

by the river networks are illustrated in Fig. 9a. The color

on a specific location of the river networks represents

MAP for the upstream catchment area of the location.

Figure 9a demonstrates that the erroneous early peaks

generated by 1- and 2-h lead time QPF (Fig. 8) were

mainly caused by major overestimation in the north-

western upstream areas of the Cedar River basin. In

Figs. 8b and 8d, the second rain event shows rainfall

FIG. 8. Simulated streamflow driven by HRRR QPF at (a)

Waterloo and (c) Cedar Rapids and time series of MAP for the

upstream area at (b) Waterloo and (d) Cedar Rapids. The nu-

meric values in (b) and (d) represent accumulated MAP for each

rain event.

TABLE 2. Performance metrics of streamflow simulations

driven by the QPE products (MRMS and IFC). The NWM cycle

of analysis and assimilation is also presented for reference.

Waterloo Cedar Rapids

Metrics MRMS IFC NWM MRMS IFC NWM

NSE 0.85 0.78 0.89 0.79 0.72 0.97

R 0.95 0.90 0.96 0.92 0.86 0.99

KGE 0.80 0.79 0.85 0.85 0.82 0.90

a 0.90 0.87 1.14 0.97 0.91 1.10

b 0.83 0.88 1.03 0.88 0.92 1.01
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separation by about a day, which verifies that this event

generated two consecutive peaks associated with rapid

recession of HLM. We also present the aggregated rain

for the second event over the river networks in Fig. 9b.

Figure 9b shows significant differences in accumulated

rainfall (e.g., over the Shell Rock River basin and up-

stream basins nearWaterloo) and its spatial distribution

among MRMS and HRRR QPF with different lead

times. This led to the overestimation (1 and 2h) and

underestimation (5 and 6h) of the peaks. Because of the

large contributing area, the stream locations near the

basin outlet (Cedar Rapids) reveal relatively smallMAP

when compared to some upstream tributaries.

Figure 10 demonstrates the statistical performance of

hydrologic simulations driven by HRRR QPF with re-

spect to forecast lead time and basin scale. The number

of drainage areas included in Fig. 10 is identical to that

in Fig. 5, and we present the results up to 6-h lead time.

We note that some negative ranges for NSE and KGE

are not fully shown in short lead times because nega-

tive values were widely distributed, particularly at the

smaller-scale basins. In Fig. 10, we do not include

the ingredients of KGE, a, and b, presented in Tables 3

and 4. Similar to the results shown in Fig. 5 and

Tables 3 and 4, the performance gradually decreases at

the initial lead times of 2 and 3h, and then starts in-

creasing at 4–6-h lead times, particularly at smaller basin

scales. It is hard to find any scale-dependent property

clearly, but large-scale basins demonstrate less variability

and better performance, except for the performance of

the largest basin scale at 3–6-h lead times.

5. Summary and discussion

To enhance hydrologic prediction capabilities, high-

resolutionQPF (e.g., HRRR) has recently been appended

into the procedures of operational hydrologic forecast-

ing based on distributed hydrologic modeling (e.g.,

Maidment 2017; Krajewski et al. 2017). In this study, we

aimed to evaluate HRRR QPF in terms of the precipi-

tation forecast skill and the effects of forecast uncer-

tainty on flood prediction using an Iowa flooding event

that occurred in September 2016. We statistically

quantified the uncertainty of HRRR QPF and the per-

formance of hydrologic simulation results driven by the

QPF product. We used conventional verification skill

scores employed in a number of meteorological studies

(e.g., Schaefer 1990; Moser et al. 2015) for the precipi-

tation forecast evaluation. For hydrologic evaluation,

we examinedMAP estimated fromHRRRQPF against

that from the gridded reference (MRMS), as well as

hydrologic simulation results driven separately by

HRRR and MRMS.

Verification of precipitation forecasts reveals that the

skill gradually decreases as the forecast lead time in-

creases (Fig. 4). The analysis also shows that the best

skill is achieved at 1-h lead time (but about 30% skill

based on GSS is not good enough to justify further

streamflow forecasting) and significantly drops after

that, implying that some improvement for 1-h as well as

further lead times is necessary to apply the QPF product

to hydrologic prediction. The MAP analysis shown in

Figs. 5 and 6 clarifies the quantitative uncertainty fea-

tures of HRRR QPF regarding catchment scale and

forecast lead time. Overall, the bias and variability of

HRRRQPF at smaller-scale basins steadily decrease as

forecast lead times become longer (e.g., up to 6-h lead

time). This indicates that the prediction capability of

numerical models is limited at short lead times because

of the challenge in model initialization (e.g., Lin et al.

2005). HRRR appeared to improve the initialization

issue somewhat using radar data assimilation (Benjamin

et al. 2009) because theQPF uncertainty at 1-h lead time

was remarkably lower than it was at other initial lead

times such as 2, 3, and 4h (see, e.g., Fig. 6). Three-

dimensional radar reflectivity data created as part of the

MRMS data suite are assimilated into the HRRRmodel

to initialize storm information at the 3-km scale and

thus to improve predictions regarding ongoing convec-

tion at the earlier forecast lead times. While we are

uncertain of the assimilation performance using the

radar data in HRRR, Pinto et al. (2015) reported that

the model predicted too many convective systems

within 4-h lead time over the Great Plains.

TABLE 4. Performance metrics of streamflow simulations at Cedar

Rapids driven by HRRR QPF up to 6-h lead time.

HRRR QPF lead time (h)

Metrics 1 2 3 4 5 6

NSE 0.47 21.22 21.44 20.11 0.30 0.19

R 0.79 0.51 0.35 0.39 0.68 0.67

KGE 0.73 0.19 0.14 0.36 0.34 0.33

a 1.16 1.49 1.41 0.85 0.46 0.49

b 1.09 1.41 1.38 1.13 0.80 0.73

TABLE 3. Performance metrics of streamflow simulations at

Waterloo driven by HRRR QPF up to 6-h lead time.

HRRR QPF lead time (h)

Metrics 1 2 3 4 5 6

NSE 0.67 20.49 21.19 20.09 0.30 0.24

R 0.85 0.59 0.37 0.39 0.69 0.72

KGE 0.83 0.35 0.17 0.36 0.33 0.32

a 1.08 1.38 1.41 0.85 0.47 0.47

b 1.03 1.33 1.35 1.10 0.75 0.67
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In operational hydrologic forecasting, a combination

of available QPE at present time and QPF for the next

couple of hours or days is used to drive a hydrologic

model. This general procedure is repeated at each

forecast time and generates streamflow forecasts. In

this study, however, we separately drove the HLM with

each QPE and QPF forcing product (see Fig. 2) to ex-

amine hydrologic prediction errors contributed solely

by the QPF uncertainty. The QPF forcing products were

organized by the same lead time data issued at different

times. We note that this setup may exaggerate the pre-

diction errors, and we may not see the same or similar

extent of errors in actual operations as or to those pre-

sented in this study. The hydrologic simulation results

based on performancemetrics (Tables 3, 4) demonstrate

that the result driven by 1-h lead time QPF is relatively

better than other lead time results, and the performance

sharply drops at initial lead times (e.g., 2 and 3h). The

best performance achieved at 1-h lead time does not

seem acceptable because it significantly overestimates

the flood peak along with the generation of an early

erroneous peak that is not detectable in the streamflow

observation (Fig. 8). The hydrologic simulation shows a

similar tendency discussed in theMAP analysis in which

the QPF simulation performance sharply decreases at

1–3-h lead times and starts increasing from 4- through

6-h lead times. The scale dependence shown in theMAP

analysis (Fig. 5) is not clearly detected in the hydro-

logic simulations, while large-scale basins show better

performance and smaller variability, particularly at

5- and 6-h lead times (Fig. 10).

We based this study on a specific event that caused

significant flooding in Cedar Rapids, Iowa. The HRRR

error characteristics may vary depending on the season,

geographic location, and precipitation regime (see, e.g.,

Pinto et al. 2015). Therefore, for comprehensive un-

derstanding, we need further study to collect multiyear

products and examine error features of HRRR QPF.

We also know that the performance of persistence-

based precipitation forecasts tends to be better than

that of numerical weather predictions at very short lead

times (e.g., Wilson et al. 1998; Lin et al. 2005). The range

of these short lead times may vary with different fore-

cast schemes and models.

Our future investigation will study which lead time

shows the performance transition between HRRRQPF

and persistence-based (e.g., advection) forecasts by

comparing their forecast skills. This will provide re-

searchers and forecasters with useful information on

whether they should replace or blend model QPF with

persistence-based QPF to improve prediction skills at

short lead times. The evaluation framework presented

in this study demonstrates that the QPF error is a

function of forecast lead time. We note that the QPF

error (e.g., bias) should be individually corrected re-

garding forecast lead time before its application to hy-

drologic prediction, and the required procedure for

error characterization (e.g., bias and variability) can be

FIG. 9. AggregatedMRMS and HRRRQPF rainfall over time and space represented by the river networks: (a) the first event starting on

15 Sep and (b) the second event staring on 21 Sep, both of which are shown in Figs. 8b and 8d.
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FIG. 10. Statistical performance of hydrologic simulation driven by HRRR QPF. The performance is measured by NSE, R, and KGE

regarding basin scale and forecast lead time. As in Fig. 5, all nested catchment areas in the Cedar River basin are included in the analysis.
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the basis of an ensemble nowcasting framework (e.g.,

Bowler et al. 2006).
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